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Abstract

State-of-the-art 3D human pose estimation approaches

typically estimate pose from the entire RGB image in a sin-

gle forward run. In this paper, we develop a post-processing

step to refine 3D human pose estimation from body part

patches. Using local patches as input has two advantages.

First, the fine details around body parts are zoomed in to

high resolution for preciser 3D pose prediction. Second, it

enables the part appearance to be shared between poses to

benefit rare poses. In order to acquire informative repre-

sentation of patches, we explore different input modalities

and validate the superiority of fusing predicted segmenta-

tion with RGB. We show that our method consistently boosts

the accuracy of state-of-the-art 3D human pose methods.

1. Introduction

The problem of 3D human pose estimation, de-

fined as localizing 3D semantic keypoints of the hu-

man body, has enjoyed substantial progress in recent

years [35][34][48][31][22][32]. However, the prediction on

some cases are still not accurate enough, especially on poses

rarely seen in the training set (rare poses). This is due,

in large part to the dataset imbalance. Data-driven meth-

ods trained on dataset with frequently seen poses (common

poses) cannot generalize well to rare poses [17]. The im-

balance between poses makes training difficult, which leads

to a model that cannot generate sufficiently accurate result.

To improve 3D human pose estimation, this paper aims

at using high-resolution patches that are cropped based on

2D keypoints. Body part patches can produce more accu-

rate result for two reasons. First, computational resource

can be gathered to focus on a high-resolution local region.

Existing human pose estimation methods usually resize the

input image to a fixed scale, in which some body parts

have low resolution (See Fig. 2). The fine details in parts

are therefore downplayed. To recover high resolution from

low resolution, we select the ”zoom in” operation which

is widely used in lots of vision tasks e.g. human part seg-

mentation [45]. Second, the local patch appearance can be

shared among different poses. For instance, consider the

rare sitting pose and common standing pose in Fig. 3, their

local image appearance around left knee → left ankle are

similar despite the varied global image appearance. This en-

ables us to train the model via patches from different poses.

In this work, we propose a patch-based refinement mod-

ule to correct the initial pose estimate of an existing method.

Our method upsamples individual local body part patches

as input to the refinement module. The refinement module

then explicitly concentrates on per-part appearance details

to generate a more accurate pose estimate. Fig. 1 shows a

brief sketch of the pipeline. The articulation of refinement

module is motivated by the fact that estimating pose from

body part patches alone is difficult without the global con-

text and skeleton structure constraint. The holistic reason-

ing of the pose, in fact, conveys valuable information e.g.

joint angle limit. For this reason, instead of directly estimat-

ing 3D pose from patches, we design a refinement module

that uses estimation of existing method as an initialization.

To further strengthen the representation of local patches,

we use predicted segmentation along with RGB. Predicted

segmentation provides useful shape prior for estimating rel-

ative depth, while being robust to dim illumination and clut-

tered background. In occlusion cases, predicted segmenta-

tion preserves the occlusion relationship between occluding

and occluded body parts.

Our patch-based refinement module can be appended

to any existing method. Extensive experiments confirm

that the refinement module can effectively improve various

state-of-the-art methods. To the best of our knowledge, this

is the first successful attempt at improving 3D pose accu-

racy by patch-based refinement. The refinement is widely

applicable with minimal time overhead.

We make the following contributions:

• For the first time, we show that patch-based refinement

is able to improve the accuracy of existing 3D human

pose methods.

• We demonstrate that high-resolution local part patches
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Figure 1. Framework overview. Starting from RGB image input, 2D keypoints and segmentation are predicted first. Predicted 2D

keypoints are used to crop patches from both RGB and predicted segmentation (color encoded). The RGB patches and segmentation

patches are fused together to attain residual limb orientation vector (in 3D), which is transformed to residual 3D pose along the hierarchical

human skeleton tree. Residual and initial 3D pose estimate are combined to construct the final 3D estimate. The refined pose (Red) is

overlaid on the initial pose (Blue) for better readability. Poses are visualized in a novel 3D viewpoint.

retain fine details to achieve more accurate 3D human

pose prediction, especially on rare poses.

• We show refinement solely with RGB patches sur-

passes the original result. Furthermore, we consolidate

the extra value of predicted segmentation patches.

2. Related Works

3D human pose estimation 3D human pose estimation

has basically been approached in two ways. The first way is

to decompose the problem into two steps where the first step

estimates 2D from RGB, and the second step lifts 2D to 3D.

[22] demonstrate very promising result with a simple multi-

layer perceptron using 2D skeletal joints as the only input.

In similar work, [43] propose to estimate relative depth from

skeleton label map[46]. More recently, [29] explore differ-

ent input representations and establish a very solid system

using color-encoded segmentation alone. The performance

of these methods is limited, though, owing to the inherent

depth ambiguity problem from 2D-3D lifting. [17] argue

that generating multiple hypotheses is more reasonable pro-

vided this fundamental depth ambiguity nature. We take in-

spiration from the representation in [29] and merge it with

original RGB cue.

Another line of works directly regress 3D from RGB im-

age usually featuring a powerful end-to-end deep learning

architecture. The major difference from the previous di-

rection lies in the inclusion of RGB image cue where the

image appearance also contributes to the estimation of 3D

joints. [23] is the first to employ fully convolutional net-

work in 3D human pose. Later [31] showcase a FCN net-

work with volumetric representation. A recent work [35]

power this representation with joint training strategy and a

strong ResNet-based architecture. [20] regress a novel rep-

resentation called orientation map by virtue of fully con-

volutional network. This method then binds orientation to-

gether with each limb region, which better associates image

regions and 3D predictions. We draw on the success of this

orientation representation and association.

Leveraging local part appearance with global con-

text for inference Combining local part appearance with

holistic image has been proven beneficial in 2D pose

[27][33][11][15][40]. [6] capture spatial relationship within

image patches of different parts with DCNN and graphical

model. [39] crop features around coarse 2D keypoint pre-

diction to regress 2D offset. In the scenario of 3D pose,
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Figure 2. Motivation: Local patch for fine details amplification.

To determine the orientation of right elbow→right wrist (Green

arrow), we are more interested in the content in Red patch com-

pared to other parts e.g. left knee → left ankle (Orange arrow).

However, the resolution of this ”Patch of Interest” (Red) in origi-

nal 224×224 input image is only 24×24, which is relatively low in

modern network architectures. By explicit zoom in operation, the

resolution of local patch is increased for further refinement. Left:

Original image input. Right: Recovered high-resolution patch.

Figure 3. Motivation: Local patch for appearance sharing. The

local part appearance around left knee → left ankle is similar be-

tween the rare sitting pose (Top) and the common standing pose

(Bottom), which makes part appearance sharing between common

and rare poses possible. We will later show in Sec 4.4 this is useful

for rare poses. Left: Image input. Right: Cropped patch.

however, few works have explicitly processed the informa-

tion of local part. [5] extract local regional feature map.

[25][13][28] perform local 3D refinement from local view

in depth image. Different from these works that only uti-

lize depth image as input, we capitalize on local RGB and

segmentation cues.

To make use of the low-resolution local image patch, a

common strategy is to recover high-resolution map via sub-

sequent upsampling. [45] refine parsing result by adaptively

zooming in local region. Lin [19] integrate low-resolution

semantic features with fine-grained low-level features to

generate high-resolution semantic feature maps. We choose

the simple upsampling operation to recover high resolution

from low resolution.

Human pose refinement A myriad of methods em-

bed refinement into their pose estimation architectures.

[7][26][44][2][3][40] improve 2D keypoint estimation ac-

curacy with multi-stage architecture. [37][38] bring better

3D prediction by repetitive projection and reprojection.

An alternative solution of refinement is to separate the

pose estimation and refinement into two parts. Recent work

[24] put forward a model-agnostic refinement network by

synthesizing pose from error statistics prior. [12] improve

the initial estimation by modelling input image space and

output pose space. Similarly, our method does not perform

pose estimation and refinement in one go.

3. Method

3D human pose estimation targets at localizing prede-

fined 3D keypoints X ∈ RN×3 (N is the number of key-

points) from a single RGB image I . Our goal here is to

refine the 3D pose output from any existing approach.

The overall architecture is displayed in Fig. 1. To begin

with, it takes 3D pose estimation result of any method as

initial 3D pose estimate. The patch-based refinement then

forwards cropped patches of 2D segmentation and input im-

age to estimate residual pose, which is added with initial

pose to output the final refined pose.

3.1. Initial Pose Estimate

Our patch-based 3D pose refinement method is a mod-

ule that can be attached to any existing 3D pose estima-

tion algorithm. Specifically we deploy existing algorithms

[31][30][35][21][18], which take the entire RGB image that

encompasses global context as input, to estimate initial 3D

prediction X̂(0) from a monocular RGB image.

3.2. Local Patch­based Refinement

Patch Cropping We base the patch cropping operation

on 2D keypoint and segmentation prediction. Before crop-

ping patches, we perform 2D keypoint estimation, whereby

the keypoints define the local patch region surrounding each

body part. We also estimate segmentation S from the input

RGB. Note S is a color-coded map from semantic part prob-

ability maps.

Having predicted 2D keypoints and segmentation, we

crop patches from both RGB and predicted segmentation

as follows. For each limb (N − 1 in total) the predicted
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2D of its two endpoints construct a tight bounding box of

size h × w, which is center padded and rescaled around

part center, so that the patch covers sufficient contextual re-

gion. Before feeding into the refinement module, the patch

is zero padded and enlarged to network input resolution.

This way, the low-resolution patch is zoomed in to offer fine

details. The cropping is done on segmentation and RGB

respectively. We then concatenate the cropped patches for

each limb to form a volume Concat(Crop(I), Crop(S)) ∈
R((N−1)×6)×H×W , which is the input for the refinement

module.

Refinement Module In a nutshell, the objective of re-

finement is to use local patch details from RGB and seg-

mentation for updating the initial prediction.

X̂(1) ← X̂(0) + Updater(Concat(Crop(I), Crop(S)))
(1)

Here rather than directly estimate the residual 3D pose

Updater(.), we frame the problem as estimating orientation

representation introduced in OriNet [20]. Each limb part

patch, which is propagated to the refinement module, con-

tains two keypoints attached to that limb. The limb orien-

tation vector represents the relative position between these

two keypoints. Thus, the limb orientation representation

lends itself natural to model from per-part local appearance.

In order to remove the influence of different human scales

and resolutions, this orientation vector is additionally nor-

malized by bone length statistic on training set [20]. Since

we already have an initialized pose estimate, herein we opt

to learn the residual orientation detailed below.

Write Û (0) as the predicted orientation vector from ini-

tial pose estimate X̂(0) in Sec. 3.1 and Ugt as the ground

truth counterpart, the residual we aim to learn is Ugt−Û (0).

We adapt ResNet-50 [14] to learn this residual orientation.

If we denote ∆U as the learnt residual orientation, then

the loss function is:

L =
∑

k

||∆Uk − (Ugt
k − Û

(0)
k )||22 (2)

where ∆Uk is the learnt residual orientation for the k-th

limb.

During inference, the learnt residual orientation ∆U is

transformed back to residual 3D pose for final estimation.

In more detail, ∆U is scaled back with limb length statis-

tic to Unnorm(∆U). We then reconstruct residual 3D

pose Updater(.) along the skeleton tree hierarchy with

Unnorm(∆U), following previous practice [20]. After-

wards we add the residual with initial pose estimate to pro-

duce the final refined pose (Eq. (1)).

4. Experiments

4.1. Implementation Details

For 2D keypoints, we apply integral regression [35] on

top of keypoint probability maps from 2D Hourglass [26].

For 2D segmentation, we employ NBF [29] for its state-of-

the-art accuracy. The part segmentation is color encoded to

3× 256× 256. The tight bounding box in Sec. 3.2 is center

padded to max(28, h)×max(28, w). The rescaling factor

is empirically set to 2.3. The cropped patches are resized

to 256× 256 and then fed into a ResNet-50 [14], where the

last 1000-way fully connected layer is changed to output

48-D residual orientation vector (Sec. 3.2 ∆U ). Weights

pretrained on ImageNet [9] are loaded up to the penultimate

layer. L2 loss is enforced to learn ∆U (Eq. (2)). We do not

perform end-to-end training, but rather take result of other

methods as initial pose estimate. Implementations are in

Caffe and PyTorch. We train the refinement module for 20

epochs using Adam with batch size of 32. Base learning

rate is 1e-5, which is divided by 10 after loss plateau on the

validation set.

4.2. Datasets and Metrics

We conduct experiments on Human3.6M [16], which is

insofar the largest 3D human pose dataset for indoor Mo-

Cap setup. We follow the standard protocol to use subject

S1, S5, S6, S7, S8 for training and test on S9, S11 every

64 frames. We measure pose accuracy in terms of MPJPE

(mean per joint position error), which has been widely used

before [31] [22] [21][48][35].

4.3. Improvement over State­of­the­art Methods

We report the performance improvement when our

method is applied to state-of-the-art methods in Tab. 1. We

experiment with five methods [31][30][35][21][18]. To ob-

tain initial pose estimate, we use their released code with

pretrained models and test by ourselves whenever possible.

We can see that the patch-based refinement yields better re-

sult, especially for rare poses e.g. SitDown on [31][21] and

Sit on [31][30].

4.4. Qualitative Visualization

To further analyze the improvement, in Fig. 4 we present

qualitative result. Two cases, where our local patch-based

refinement is of vital importance, are highlighted. As ex-

emplified in Fig. 5 and Fig. 6, almost all the joints are more

accurately localized in these two cases.

Fig. 5 shows the first case: rare pose. As stated previ-

ously, similar local part appearance shared from common

poses can aid the refinement of rare poses.

Fig. 6 visualizes the second case: occlusion. When oc-

clusion happens, the additional segmentation cue makes it
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Method Direction Discuss Eat Greet Phone Pose Purchase Sit

Pavlakos [31] 59.7 70.3 59.0 78.7 64.9 54.7 72.9 80.9

+ Refinement (Ours) 56.5 64.4 57.5 60.1 62.5 50.9 68.9 79.4

Integral Pose [35] 63.3 51.8 54.5 92.4 54.1 45.4 52.7 66.8

+ Refinement (Ours) 60.4 51.5 54.3 80.7 53.9 45.2 52.7 66.7

Luvizon [21] 55.3 57.7 51.6 55.9 57.0 53.5 56.8 66.8

+ Refinement (Ours) 55.4 57.7 51.4 55.6 56.5 53.6 53.3 66.0

Pavlakos et al. [30] 47.5 52.6 55.3 50.8 58.5 47.4 52.8 64.5

+ Refinement (Ours) 46.8 52.1 54.3 50.0 57.5 46.8 52.8 63.5

Kocabas [18] 60.9 49.8 46.6 70.1 48.8 45.4 45.6 53.7

+ Refinement (Ours) 60.5 49.6 46.4 70.0 48.7 45.0 45.5 53.6

Method SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg

Pavlakos [31] 134.6 62.4 78.9 74.6 48.9 69.6 57.0 70.7

+ Refinement (Ours) 120.8 59.8 76.9 57.0 45.0 66.3 54.2 65.2

Integral Pose [35] 104.6 54.6 61.7 68.6 40.9 54.8 46.5 60.9

+ Refinement (Ours) 97.1 54.4 61.6 53.2 40.5 54.5 46.2 58.3

Luvizon [21] 78.3 58.4 65.8 52.5 48.8 62.9 52.0 58.3

+ Refinement (Ours) 77.1 58.2 65.6 52.2 48.6 62.6 51.6 57.9

Pavlakos et al. [30] 69.6 54.7 65.2 52.6 44.9 60.0 48.0 55.3

+ Refinement (Ours) 69.6 53.9 64.2 51.8 44.3 59.1 46.8 54.5

Kocabas [18] 87.9 49.2 52.2 46.7 42.6 51.3 45.1 52.8

+ Refinement (Ours) 87.8 48.9 51.9 46.5 42.2 51.1 44.8 52.6

Table 1. Improvement of MPJPE when the patch-based refinement is applied to state-of-the-art methods. No procrustes alignment

is used. The lower the number, the better the result. Bold face indicates the better result.

Figure 4. Qualitative results of the patch-based refinement.

Left: Image input. Middle: Cropped segmentation and RGB

image patch. Right: The refined result (Red) on initial estimate

(Blue). Ground truth is colored in white for reference. Blue arrow

points to the part and refined joint. Only best 3D local view is

visualized.

Figure 5. Most helpful case 1: rare pose. Red indicates a joint

is improved with patch-based refinement. Blue indicates no im-

provement.

easy to discriminate between occluding and occluded limb.

A vivid illustration can be found in Fig. 7.

4.5. Ablation Study

We use the method in Pavlakos [31] to generate initial

pose estimate for ablation study. We will first elucidate

the importance of patch cropping operation. Then we will
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Figure 6. Most helpful case 2: occlusion. Red indicates a joint

is improved with patch-based refinement. Blue indicates no im-

provement. Occluded part is enclosed in rectangle.

elaborate on the importance of using both segmentation and

RGB for patch cropping.

4.5.1 Importance of Patch Cropping

To prove the necessity of patch cropping operation for re-

finement, we implement a baseline where the original RGB

image rather than the cropped patch is input to the re-

finement module. No segmentation is used for simplicity.

Passing the entire RGB image into the refinement module,

which has been explored in [36][44], can be interpreted as

stacking one more stage to any prevalent multi-stage pose

estimation architecture. As seen in Tab. 2, cropped patch

performs generally better than uncropped RGB image. This

can be attributed to the high-resolution local patch where

local detail is amplified.

4.5.2 Importance of Fusing Segmentation with RGB

Having established that patch cropping is necessary, we

now proceed to investigate the best input modality for patch

cropping. In Tab. 3, we quantitatively compare differ-

ent choices of patch input: (1) w/ cropped RGB: with

only cropped RGB patches. (2) w/ cropped Seg: with

only cropped segmentation patches. (3) w/ cropped RGB

+ cropped Seg: mixture of cropped segmentation and

cropped RGB patches. Among which (3) performs the best.

One observation is that (1) is already better than initial pose

estimate, which shows the effectiveness of the patch-based

refinement. To gain insight on the benefit of the extra seg-

mentation cue, we depict in Fig. 7 two specific cases when

using cropped RGB is not accurate enough. In the first case,

the cropped RGB patch is too vague to discern among lower

arm, upper arm and background. Segmentation gets rid of

the background wall and singles out the two arms. The other

Figure 7. Qualitative examples showing adding cropped seg-

mentation is better than only cropped RGB. Left: Image input.

Middle: Cropped segmentation and RGB image patch. Right:

The result with cropped segmentation (Red) vs with only cropped

RGB (Green). White is ground truth. Body part and refined joint

are marked with Blue arrow. We only show the novel local 3D

view for better readability. Top: Note that the lower arm almost

blends in with the background, which is eliminated in segmen-

tation. Besides, the dim illumination no longer exists. Bottom:

Occlusion case. Left and right ankle are not clearly shown in the

RGB patch because of the overlapping shoes. In the segmentation

patch, nonetheless, left leg and right leg are distinguishable.

case contains an occluded part: left knee → left ankle. It

is evident that the RGB patch fails to distinguish between

left ankle and right ankle, which is addressed by segmenta-

tion. When segmentation occasionally fails e.g. the shape is

completely wrong, the other RGB cue can still prevent the

refinement module from outputting a huge residual pose.

See [41] for more detailed discussion.

5. Discussion

It should be noted that there are some tricks to further

boost the performance. Below we list some examples.

It is feasible to use conditional random field [8], attention

mechanism [4] or feature pyramid [47] to further exploit ap-

pearance information contained in a local patch. We only

consider rescaling all the body part patches to a fixed scale,

which is limited in that different body parts may have dif-

ferent sizes. To deal with this issue, parts can be adaptively

zoomed in to different proper scales[45]. For simplicity, we

here only discuss patch cropping using RGB and segmenta-

tion. One can make use of other representations e.g. 2D key-

point probability map [36], 2D skeleton label map [46][43],

height map [10], star map [49], joint angle [50] etc. Our

current fully connected regression implementation can also

be extended to dense regression by fully convolutional net-

work for preciser prediction [20][42].

As to refinement itself, the current refinement module

equally treats joints that are already very close to ground

truth and that are far away from ground truth. Confidence-

aware refinement can actually be adopted, where individual

weights are given to each joint allowing refinement prioriti-
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Method Direction Discuss Eat Greet Phone Pose Purchase Sit

+ Refinement (w/ uncropped RGB) 62.0 66.5 58.3 63.0 62.9 57.1 66.9 80.7

+ Refinement (w/ cropped RGB) 57.2 65.9 58.0 61.0 62.5 52.2 71.3 79.3

Method SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg

+ Refinement (w/ uncropped RGB) 118.2 61.9 76.7 63.1 49.2 65.9 56.5 67.2

+ Refinement (w/ cropped RGB) 121.1 59.9 77.0 58.3 45.5 67.2 54.7 66.0

Table 2. Necessity of patch cropping operation. The result of refinement with cropped RGB patches and with original RGB image input

on [31]. Segmentation cue is not used here. Using patch is generally better than original RGB image as input for refinement.

Method Direction Discuss Eat Greet Phone Pose Purchase Sit

Pavlakos [31] 59.7 70.3 59.0 78.7 64.9 54.7 72.9 80.9

+ Refinement (w/ cropped RGB) 57.2 65.9 58.0 61.0 62.5 52.2 71.3 79.3

+ Refinement (w/ cropped Seg) 61.5 66.1 58.1 62.3 62.7 55.9 67.0 80.5

+ Refinement (w/ cropped RGB + cropped Seg) 56.5 64.4 57.5 60.1 62.5 50.9 68.9 79.4

Method SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg

Pavlakos [31] 134.6 62.4 78.9 74.6 48.9 69.6 57.0 70.7

+ Refinement (w/ cropped RGB) 121.1 59.9 77.0 58.3 45.5 67.2 54.7 66.0

+ Refinement (w/ cropped Seg) 117.4 61.6 76.0 61.6 48.5 65.6 56.2 66.7

+ Refinement (w/ cropped RGB + cropped Seg) 120.8 59.8 76.9 57.0 45.0 66.3 54.2 65.2

Table 3. Effect of different patch input modality. This table explains the reason to fuse cropped segmentation and cropped RGB.

zation of some joints, in a similar way as [1].

6. Conclusion

We present the first patch-based 3D human pose refine-

ment method. We substantiate that the local body part

patches from RGB, which preserve fine details, can be

zoomed in to high resolution for accurate prediction. Fur-

ther, we prove the effectiveness of incorporating segmenta-

tion prediction with RGB. We empirically observe that the

local part appearance sharing between poses is important

for refining rare poses. The high-resolution fine details and

local appearance sharing result in consistent performance

gain on state-of-the-art methods. Our method is model-

agnostic, which can be inserted after any 3D pose model to

refine inaccurate poses with minimum computational cost.
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